this paper we have disproven assumption 2. Thus the Taft $\sigma_{0}{ }^{*}$ constants do not represent an intrinsic general ortho-electrical effect. They are a combination of the electrical effect in acidic hydrolysis, largely resonance in character, and the electrical effect in basic hydrolysis, largely localized in character. That their composition (as measured by ϵ) is the same as that of the σ_{p} constants is purely fortuitous. Their success in correlating many sets of ortho-substituted data is due to the variability of the ortho-electrical effect which ranges from $\epsilon=0$ to $\epsilon=2$. We will expand on this point in another paper.

Solvent Effects on the Composition of the orthoElectrical Effect. We have shown elsewhere that when the $\mathrm{p} K_{\mathrm{a}}$ values of 2 -substituted benzoic acids in various
solvents are correlated with eq $4, \alpha$ is constant whereas β is a function of solvent. ${ }^{5}$ The results obtained in aqueous acetone at 25° suggest the possibility of a solvent dependence of β for the correlations obtained with the rates of alkaline hydrolysis of 2 -substituted ethyl benzoates. More telling evidence on this point is obtained from a consideration of the β values obtained for 65 , 85 , and 95% aqueous dimethyl sulfoxide. The β values are $0.838,1.55$, and 2.59 , respectively. While the results are certainly not conclusive, they do indicate the strong possibility that β is a function of solvent for the alkaline hydrolysis of benzoate esters.

As was the case for the benzoic acid ionization, α seems to be largely or entirely free of solvent dependence.

Infrared Intensities as a Quantitative Measure of Intramolecular

 Interactions. V. ${ }^{1}$ ortho- and meta-Disubstituted Benzenes. The ν_{16} Band near $1600 \mathrm{~cm}^{-1}$A. R. Katritzky, ${ }^{2}$ M. V. Sinnott, ${ }^{2}$ T. T. Tidwell, ${ }^{2,3}$ and R. D. Topsom ${ }^{4}$
Contribution from the School of Chemical Sciences, University of East Anglia, Norwich, England, and the School of Physical Sciences, La Trobe University, Melbourne, Australia. Received June 26, 1968

Abstract

The integrated intensity is reported for the $1600-\mathrm{cm}^{-1}$ band for many meta- and ortho-disubstituted benzenes. Equations relating the expected intensities with $\sigma_{\mathrm{R}}{ }^{\circ}$ parameters for the substituents are deduced and shown to hold. Conformational isomerism for meta-substituted benzaldehydes and other compounds with asymmetrical substituents is discussed and tentative values for the corresponding equilibrium constants are calculated. Steric and mesomeric interactions in ortho-disubstituted compounds are discussed.

Previous papers in this series have shown that the total integrated area of the bands near 1600 and 1580 cm^{-1} for mono-5 and para-disubstituted benzenes ${ }^{1}$ and for monosubstituted durenes ${ }^{5}$ are related by eq 1,2 , and 3 to the $\sigma_{\mathrm{R}}{ }^{\circ}$ value(s) of the substituent(s); in eq 2 the algebraic signs of the $\sigma_{\mathrm{R}}{ }^{\circ}$ values result in over-all addition for "unlike" substituents and over-all subtraction for "like" substituents. The different values of the coefficients in eq 1,2 , and 3 (also 11 ; see later) are believed to arise from variations in the precise form of the normal mode as between various substitution types of benzenes. Equation 2 applies to para-disubstituted

$$
\begin{gather*}
A_{\text {mono }}=17,600\left(\sigma_{\mathrm{R}}{ }^{\circ}\right)^{2}+100 \tag{1}\\
A_{\text {para }}=11,800\left(\sigma_{\mathrm{R}}{ }^{\circ} 1-\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}+170 \tag{2}\\
A_{\text {durene }}=11,300\left(\sigma_{\mathrm{R}}{ }^{\circ}\right)^{2}-30 \tag{3}
\end{gather*}
$$

[^0]compounds in which direct resonance interaction between the two substituents does not occur; discrepancies from eq 2 are useful for the investigation of substituent interactions. ${ }^{1}$ Equation 3 applies in the absence of steric effects.

The extension of such infrared intensity measurements to other polysubstituted systems was expected to be a useful means for the examination of the combined effects of resonance and steric interaction. For example, meta substituents should be incapable of direct interaction either sterically or by ordinary conjugation, whereas ortho substituents can interact by both such means. Earlier semiquantitative work by one of us ${ }^{6}$ had indicated that whereas the intensity of the paradisubstituted derivatives varied as the algebraic difference between the electronic effects of the substituents ${ }^{7}$ the intensity of the meta-disubstituted compounds varied as approximately their sum, ${ }^{8}$ and the ortho-disubstituted derivatives showed intermediate behavior. ${ }^{9}$ Little other work has appeared on the

[^1]infrared intensities of these compounds. Extinction coefficients for ortho-disubstituted benzenes have been reported by Brigodiot and Lebas. ${ }^{10}$ Bobovitch and Belyaevskaya ${ }^{11}$ found no simple dependence between $\log A$ for the $1600-\mathrm{cm}^{-1}$ band in the Raman spectrum and Hammett parameters for meta-disubstituted compounds similar to the relation that they reported for para-disubstituted derivatives; however, Schmid ${ }^{12}$ has successfully correlated the infrared intensities of CH stretching bands in ortho-disubstituted benzenes with σ_{I} values for the substituents.
meta- and ortho-disubstituted benzenes have now been investigated using the more accurate techniques developed for the correlation of ν_{16} ring vibrations. The normal-coordinate analysis of meta-dichlorobenzene ${ }^{13}$ indicates that the form of the $1600-\mathrm{cm}^{-1}$ vibration is similar to that in monosubstituted benzenes. Various authors have shown that ortho-14 and meta-disubstituted ${ }^{15}$ benzenes can be treated as of pseudo $\mathrm{C}_{2 \mathrm{v}}$ symmetry. It is thus possible to predict the intensities of the bands for these compounds in terms of the corresponding monosubstituted derivatives. The argument is first developed for compounds in which both substituents are of at least $\mathrm{C}_{2 \mathrm{v}}$ symmetry; correlations for less symmetrical compounds are considered later.

II

III

meta-Disubstituted Compounds. For a meta-disubstituted benzene (I), the forms of the vibrations are as given in II and III. ${ }^{13}$ A molecular orbital representation of the vibration II takes account of the varying p-orbital overlap between adjacent atoms in the ring; using double bonds to represent greater, and single bonds lesser overlap, the vibration may thus be described as IV \rightleftharpoons VI, where the signs are alternative. The equivalent valence bond representation is that canonical forms of type IV and VI contribute more significantly to the resonance hybrids in the corresponding extreme stretched forms than in the nonvibrating molecule. If the two meta groups are both either elec-

[^2]tron donors or electron acceptors, we have an alternating dipole moment in the β direction (cf. I) during the vibration (cf. VII \rightleftharpoons VIII), which may be compared to the analogous situation in the CO_{2} active stretching mode (IX $\rightleftharpoons \mathrm{X}$). Let $\sigma_{\mathrm{R}}{ }^{\circ} 1$ and $\sigma_{\mathrm{R}}{ }^{\circ} 2$ represent the $\sigma_{\mathrm{R}}{ }^{\circ}$ values of the substituents X and Y, respectively. Then the infrared intensity arising from the alternating dipole in the β direction of the molecule in mode II is given by eq 4 where b is a proportionality constant. The algebraic signs of $\sigma_{\mathrm{R}}{ }^{\circ} 1$ and $\sigma_{\mathrm{R}}{ }^{\circ} 2$ result in over-all addition for substituents of similar type and over-all subtraction for dissimilar substituents (for which compare XI \rightleftharpoons XII).
\[

$$
\begin{align*}
& A(\text { mode II, } \beta \text { direction })=b\left(\sigma_{\mathrm{R}}{ }^{\circ} 1 \cos 30^{\circ}+\right. \\
& \left.\sigma_{\mathrm{R}}{ }^{\circ} 2 \cos 30^{\circ}\right)^{2}=3 / 4 b\left(\sigma_{\mathrm{R}}{ }^{\circ} 1+\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2} \tag{4}
\end{align*}
$$
\]

During vibrational mode II, in general there is also an alternating dipole moment in the α direction of the molecule; this is exemplified by the motion XI \rightleftharpoons XII by which atoms 1 and 3 simultaneously become alternately more negatively (XII) and positively (XI) charged with respect to atoms 6 and 4 , respectively. The infrared intensity arising from the alternating dipole in the α direction is given by eq 5. Here the algebraic signs result in over-all subtraction for substituents of similar type and over-all addition for dissimilar substituents.

Vibration III may be represented by XIII \rightleftharpoons XV and it is evident that for this vibration to be active in the infrared region, canonical forms of type XIII or XV must be preferentially stabilized by a substituent. To the approximation of using the simple VB method, this does not occur for the meta-disubstituted derivatives, for which the total intensity hence arises almost entirely from mode II, and is given by addition of the A values deduced for directions α and β (eq 6). The constant c is then introduced to take account of overtone and combination contributions to the total intensity; we find that $A_{\text {meta }}$ is given by eq 7.

$$
\begin{align*}
& A_{\text {meta }}=b\left\{3 / 4\left(\sigma_{\mathrm{R}}{ }^{\circ} 1+\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}+\right. \\
&\left.{ }_{1 / 4}\left(\sigma_{\mathrm{R}}{ }^{\circ} 1-\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}\right\} \tag{6}\\
& A_{\text {meta }}=b\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} 1\right)^{2}+\left({\sigma_{\mathrm{R}}}^{\circ} 2\right)^{2}+\sigma_{\mathrm{R}}{ }^{\circ} 1 \sigma_{\mathrm{R}}{ }^{\circ} 2\right\}+c \tag{7}
\end{align*}
$$

It may be noted that eq 7 corresponds to vector addition of $\sigma_{R}{ }^{\circ} 1$ and $\sigma_{R}{ }^{\circ} 2$ at 60°, and that the third term is positive for two substituents of the same type, and otherwise negative.

ortho-Disubstituted Compounds. As for the metadisubstituted derivatives, the ortho-disubstituted compounds (XVI) have vibrations of types XVII and XVIII. Vibration XVII can be represented by IV \rightleftharpoons VI; dissimi-lar-type ortho substituents cause considerable charge alternation in the β direction as indicated (XIX $\rightleftharpoons \mathrm{XX}$), whereas the effects of substituents of similar type will partially cancel. The intensity thus arising is given by eq 8 .
$A($ mode XVII, β direction $)=$

$$
\begin{align*}
& b^{\prime}\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} 1-\sigma_{\mathrm{R}}{ }^{\circ} 2\right) \cos 30^{\circ}\right\}^{2}= \\
& \tag{8}\\
& 3 / 4 b^{\prime}\left(\sigma_{\mathrm{R}}{ }^{\circ} 1-\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}
\end{align*}
$$

For charge displacement during mode XVII in the a direction, groups X and Y reinforce each other if of similar type, as shown for two donor groups in XXI \rightleftharpoons XXII, whereas dissimilar groups partially cancel. Hence
$A($ mode XVII, α direction $)=$

$$
\begin{align*}
& b^{\prime}\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} 1+\sigma_{\mathrm{R}}{ }^{\circ} 2\right) \cos 60^{\circ}\right\}= \\
& 1 / 4 b^{\prime}\left(\sigma_{\mathrm{R}}{ }^{\circ} 1+\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2} \tag{9}
\end{align*}
$$

By reasoning similar to that already given for the meta-disubstituted compounds, mode XVIII will not contribute to the ortho intensity to a first approximation and thus, by addition of eq 8 and 9 , the total intensity is given by eq 10 .
$A_{\text {ortho }}=b^{\prime}\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} 1\right)^{2}+\left(\sigma_{\mathrm{R}}{ }^{c} 2\right)^{2}-\sigma_{\mathrm{R}}{ }^{\circ} 1 \sigma_{\mathrm{R}}{ }^{\circ} 2\right\}+c^{\prime}$
This corresponds to vector addition of $\sigma_{\mathrm{R}}{ }^{\circ} 1$ and $\sigma_{\mathrm{R}}{ }^{\circ} 2$ at 120° with the addition of the overtone-combination band constant c^{\prime}. The third term is now positive for dissimilar type substituents and negative for those of similar type.

Experimental Section

The techniques of sample preparation, infrared measurement, and band integration were the same as used previously. ${ }^{1}$ For all compounds the entire absorption contained within the principal band or bands was integrated, as the nearby combination bands may share intensity with the principal ring vibrations. In some cases, particularly toluenes and fluoro derivatives, the absorptions were quite complex, giving sometimes three equivalent bands. Values for nitro derivatives have low reliability because of extensive overlap of the ring vibrations by the $\mathrm{N}-\mathrm{O}$ stretch of the nitro group around $1520 \mathrm{~cm}^{-1}$.

The samples used were from commercial sources or were prepared by simple alkylations of phenols, amines, or acids. Solids were purified by recrystallization to constant melting point in

Figure 1. Plot of $A_{\text {obsd }}$ for meta-disubstituted benzenes with substituents of at least $\mathrm{C}_{2 v}$ symmetry against $\left\{\left(\sigma_{R}{ }^{\circ} 1\right)^{2}+\left(\sigma_{R}{ }^{\circ} 2\right)^{2}+\right.$ $\left.\sigma_{R}{ }^{\circ} 1 \sigma_{R}{ }^{\circ} 2\right\}: \times$, two donor substituents; $\boldsymbol{\theta}$, one donor and one acceptor; O, two acceptor substituents.
agreement with literature values. The purity of liquids was inyestigated by vapor phase chromatography, and in most cases direct comparisons were made to determine the efficiency of separation of ortho, meta, and para isomers. In most, but not all, of the compounds the isomers could be separated, and in the remaining cases the isomeric compounds were not detectable by the nmr spectrum (i.e., $<3 \%$ concentration). In all cases the liquids were purified by distillation or vpe separation until the detectable impurities amounted to less than 1% as determined by weighing vpc peaks.
Solvents for the ir measurements were carbon tetrachloride, chloroform, or cyclohexane, depending upon the solubility of the compound in question. The absence of any significant variation in the A values with solvent was confirmed for methyl m-dimethylaminobenzoate, m-methoxyacetophenone, m-chlorobenzotrifluoride, m-fluorotoluene, and m-methoxy- N, N-dimethylaniline.

Measured intensities for the meta- and ortho- disubstituted compounds studied are recorded in Tables I and II, respectively, and the frequencies of these bands are given in Tables III and IV. The frequencies are in reasonable agreement with literature data where available. Precise intensity data for comparison are scarce; a series of o-chlorophenyl compounds has been reported; ${ }^{16}$ the data are for liquid films with $A_{\text {obsd }}$ values in poor agreement with the present measurements.

Discussion

meta-Disubstituted Compounds with Both Substituents of $\mathrm{C}_{2 \mathrm{v}}$ Symmetry. Observed values of $A_{\text {meta }}$ are plotted against $\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} 1\right)^{2}+\left(\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}+\sigma_{\mathrm{R}}{ }^{\circ} 1 \sigma_{\mathrm{R}}{ }^{\circ} 2\right\}$ in Figure 1; a fair straight line plot is found, with compounds of donor-donor and donor-acceptor type showing good regularity, but with more scatter for acceptoracceptor type substituted compounds. From this line (correlation coefficient 0.990) eq 7 can be modified to 11.

$$
\begin{align*}
& A_{\text {meta }}=19,000\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} 1\right)^{2}+\left(\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}+\right. \\
& \left.\sigma_{\mathrm{R}}{ }^{\circ} 1 \sigma_{\mathrm{R}}{ }^{\circ} 2\right\}+340 \tag{11}
\end{align*}
$$

(16) M. G. K. Pillai, K. Ramaswamy, and S. G. Gnanadesikan, Indian J. Chem., 4, 415 (1966).

Table 1. Measured Integrated Intensities ($A_{\text {obsd }}$) for meta-Disubstituted Benzenes

	CHO	COMe	$\mathrm{CO}_{2} \mathrm{Me}$	NO_{2}	CF_{3}	Me	Cl	I	Br	F	OMe	NMe_{2}
NMe_{2}			6690	4330	a	a	a			a	13,700 ${ }^{\text {c }}$	16,100 ${ }^{\text {c }}$
OMe		4480	4410	1550		a	6400	6990		a	11,000	
F	2670	2680	2990	740	a	a		a	a	6230	9,030	11,500 ${ }^{\circ}$
Br	1770		1580		a	1880	a		3400	5070	7,530	
I			1510		a	1750		3180		5240	a	
Cl	1820		1606		a	1820	3510		3430	4890	a	10,800
Me		1260	930	500		830	a	a	a	3270	4,730	6,870 ${ }^{\circ}$
CN				740°	340	720	1900			3480		
CF_{3}			660^{3}	1200			806^{6}	950	860	1710		5,270
NO_{2}	2320^{6}	$1510^{\text {b }}$	1230°	2350°	a	a				a	a	a
$\mathrm{CO}_{3} \mathrm{Me}$			800	a								
CHO	$2710^{\text {b }}$											

${ }^{a}$ Result appears elsewhere in table. All results refer to carbon tetrachloride solutions except where denoted. ${ }^{b} \mathrm{CHCl}_{3}$. ${ }^{c} \mathrm{C}_{6} \mathrm{H}_{12}$.

Table II. Measured Integrated Intensities ($A_{\text {obsd }}$) for ortho-Disubstituted Benzenes

	CHO	COMe	$\mathrm{CO}_{2} \mathrm{Me}$	NO_{2}	Me	Cl	I	Br	F	OMe
NMe_{2}					$1090^{\text {c }}$				$1550{ }^{\text {c }}$	1780
OMe					a	a	1680	2200°	a	
F	3620	2660	2770		a	a	a	a	1550	1680
Br	1840		1300		a	450		380	1090	a
I			1160		a		410		1140	a
Cl	2130		1310		a	320		a	1080	1940
Me		700	780°		250	440	830	580	1010	1660
CN				910°	390	890			1800°	
CF_{3}						1850	1440	1850		
NO_{2}	660	630			810					

${ }^{a}$ Result appears elsewhere in table. All results refer to carbon tetrachloride solutions except where noted. ${ }^{b} \mathrm{CHCl}_{3} .{ }^{c} \mathrm{C}_{6} \mathrm{H}_{12}$.

Table III. Measured Frequencies of Peak Maxima $\left(\mathrm{cm}^{-1}\right)$ for meta-Disubstituted Benzenes

	CHO	COMe	$\mathrm{CO}_{2} \mathrm{Me}$	NO_{2}	CF_{3}	Me	Cl	I	Br	F	OMe	NME_{2}
NME_{2}			1604	1622							1615	1609
			1581	1573							1580	1581
OMe		1599	1602	1622			1598	1587			1613	
		1587	1589	1587			1582	1570			1594	
F	1612	1591	1618	1622						1613	1618	1622
	1594		1594	1665						1604	1596	1586
				1595								
				1571								
Br	1593		1595			1603			1575	1593	1592	
	1575		1573			1591			1567		1574	
						1571						
I			1592			1596		1594		1586		
			1568			1567						
Cl	1593		1600			1605	1580		1572			
	1573		1577			1598				1595		1564
						1578						
Me		1605	1611	1587		1615				1620	1604	
		1588	1593	1560		1591				1596	1586	1586
										1584		
CN				1620	1615	1603	1594			1611		
						1586	1572			1589		
							1566					
CF_{3}			1620	1627			1608	1601	1605	1620		1616
			1599	1599			1502	1576	1581	1604		1589
NO_{2}	1616	1617	1620	1616								
	1585	1581	1585	1505								
$\mathrm{CO}_{2} \mathrm{Me}$			1612									
	1607		1588									

Table V shows the discrepancies between the values of $A_{\text {meta }}$ from eq 11 and observed values for compounds with both substituents of $\mathrm{C}_{2 v}$ symmetry, expressed in terms of $\sigma_{\mathrm{R}}{ }^{\circ}$ values. The average discrepancy is 0.036 unit. Of the 32 values, 18 are within 0.03 unit, and only 6 above 0.06 unit. Poorest agreement is found for cyano compounds.
meta-Disubstituted Compounds with One Substituent of Less Than $\mathrm{C}_{2 \mathrm{v}}$ Symmetry. Compounds containing $\mathrm{CO}_{2} \mathrm{Et}, \mathrm{COMe}, \mathrm{CHO}$, and OMe groups show marked deviations from the simple relation 11. These groups are asymmetric, and complications therefore arise. Methyl m-fluorobenzoate, for example, is expected to have two stable conformations, XXIII and XXIV, which

Table IV. Measured Frequencies of Peak Maxima (cm^{-1}) for ortho-Disubstituted Benzenes

	CHO	COMe	$\mathrm{CO}_{2} \mathrm{Me}$	NO_{2}	Me	Cl	I	Br	F	OMe
NMe_{2}					1600				1619	1594
					1580				1579	1584
OMe	1602	1601	1603				1582	1591		
	1584	1581	1587				1572	1573		
F	1614	1612	1613						1618	1619
	1587	1584	1585						1669	1592
									1595	
									1581	
Br	1589		1593			1577		1598	1595	
	1569		1568			1571		1568	1579	
I			1587				1599		1584	
			1565				1576			
							1554			
Cl	1595		1595			1605			1597	1592
	1569		1577			1576			1589	1580
Me		1603	1604		1607	1595	1590	1597	1612	1604
		1572	1585		1483	1575	1564	1570	1591	1592
CN				1615	1625	1595			1615	
				1577	1603				1588	
									1576	
CF_{3}						1598	1580	1598		
						1583	1561	1575		
NO_{2}	1609	1612			1615					1611
	1578	1576			1581					1586

Table V. Discrepancies ${ }^{a}$ in Units of $\sigma_{\mathrm{R}}{ }^{\circ}$ for meta-Disubstituted Benzenes with Both Substituents of at Least $\mathrm{C}_{2 \mathrm{v}}$ Symmetry

	NO_{2}	CF_{3}	Me	Cl	I	Br	F
NMe_{2}	-0.012	+0.023				NMe_{2}	
F	-0.149	-0.031	-0.007		-0.045		
Br		-0.031	-0.008	+0.017		+0.033	
I		-0.011	-0.017		+0.003	+0.002	
Cl		-0.001	-0.002	+0.034	+0.004	+0.018	
Me	-0.060		-0.012		+0.003		
CN	-0.083	-0.167	+0.047	+0.099	+0.075		
CF_{3}	-0.034				+0.101		
NO_{2}	+0.026						

${ }^{a}$ Discrepancy $=\left[\left(A_{\text {obsd }}-340\right)^{1 / 2} /(19,000)^{1 / 2}\right]-\left\{\left(\sigma_{\mathrm{R}}{ }^{0} 1\right)^{2}+\left(\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}+\sigma_{\mathrm{R}}{ }^{0} 1 \sigma_{\mathrm{R}}{ }^{\circ} 2\right\}^{1 / 2}$.

XXIII

may coexist in unknown proportions. The calculation leading to eq 7 can be modified to cover such cases. Let XXV and XXVI represent the two conformations of a compound with a symmetrical substituent X of $\sigma_{\mathrm{R}}{ }^{\circ} \mathrm{l}$, and an unsymmetrical substituent YZ with components y and z of $\sigma_{R}{ }^{\circ} 2$, respectively, along, and perpendicular to, the ring-Y bond. The magnitude and sign of component y and the magnitude of component z are the same for XXV and XXVI, but the sign of z is different. Hence eq 4 and 5 must be modified to the following, where the upper and lower signs refer to the alternative conformations XXV and XXVI.

$$
\begin{aligned}
& A(\text { mode II, } \beta \text {-direction })=b\left(\sigma_{\mathrm{R}}{ }^{\circ} 1 \cos 30^{\circ}+\right. \\
& \left.y \cos 30^{\circ} \pm z \cos 60^{\circ}\right)^{2}
\end{aligned}
$$

$A($ mode II, α-direction $)=b\left(\sigma_{\mathrm{R}}{ }^{\circ} 1 \cos 60^{\circ}-\right.$

$$
\left.y \cos 60^{\circ} \pm z \cos 30^{\circ}\right)^{2}
$$

Hence relation 12 follows, setting $y^{2}+z^{2}=\left(\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}$, where the alternative signs apply to the possible configurations XXV and XXVI.

$$
\begin{align*}
& A_{m e t a(\mathrm{as} / \mathrm{s})}=19,000\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} \mathrm{l}\right)^{2}+\left(\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}+\right. \\
& \left.\sigma_{\mathrm{R}}{ }^{\circ} \mathrm{l}(y \pm \sqrt{3} z)\right\}+340 \tag{12}
\end{align*}
$$

The deviations shown by meta-disubstituted compounds containing an unsymmetrical substituent from eq 11, and also independent evidence from nmr coupling constants ${ }^{17}$ and torsional frequencies, ${ }^{18}$ indicate that the population of conformer pairs of type XXIII and XXIV are far from equal. If a reliable method of calculating y and z were available, then it would be possible to estimate the relative populations. Unfortunately this is not so; however, we have earlier ${ }^{1}$ made the arbitrary assumption that the populations of the cis and trans forms in symmetrically para-disubstituted compounds (e.g., terephthaladehyde) are equal, which enables the calculation (cf. ref 1) of the following values of y and z shown in Table VI. Using these values, we
(17) G. J. Karabatsos and F. M. Vane, J. Am. Chem. Soc., 85, 3886 (1963).
(18) F. A. Miller, W. G. Fateley, and R. E. Witkowski, Spectrochim. Acta, 23A, 891 (1967).

Table VI

	$\mathrm{CO}_{2} \mathrm{Me}$	CHO	COMe	OMe
y	0.128	0.224	0.204	0.425
z	0.087	0.097	0.077	0.053
$\sigma_{\mathrm{R}}{ }^{\circ}$	0.155	0.244	0.219	0.428

Table VII. Integrated Intensities ($A_{\text {obsd }}$) Compared with $A_{\text {cis }}$ and $A_{\text {irans }}$ Values Calculated by Eq 12 for meta-Disubstituted Benzenes with One Substituent of at Least $\mathrm{C}_{2 \mathrm{v}}$ Symmetry and One of Lower Symmetry

--Substi Asymmetric	uents \qquad Symmetric	$A_{\text {obsd }}$	$A_{\text {trans }}$	$A_{\text {cis }}$	\% trans
CHO	F	2,670	3,310	1,160	70
	Cl	1,820	2,130	750	78
	Br	1,770	2,000	650	83
	NO_{2}	2,320	2,220	3,330	91
COMe	F	2,660	3,060	1,200	79
	Me	1,260	1,300	790	93
	NO_{2}	1,510	2,050	2,930	(>100)
$\mathrm{CO}_{2} \mathrm{Me}$	NME_{2}	6,690	5,310	3,550	(>100)
	F	2,990	3,160	1,200	92
	Cl	1,610	1,770	540	87
	Br	1,580	1,880	600	76
	I	1,510	1,810	550	76
	Me	920	1,020	460	83
	CF_{3}	660	990	1,600	(>100)
	NO_{2}	1,260	1,300	2,290	96
OMe	NMe_{2}	13,700	12,590	14,400	52
	F	9,020	8,160	9,360	28
	Cl	6,400	6,060	6,820	56
	Br	6,620	6,170	7,090	50
	I	6,990	6,130	6,900	0
	Me	4,730	4,610	4,970	65
	NO_{2}	1,550	3,290	2,670	(<0)

can calculate (Table VII) from eq 12 values of $A_{\text {meta }}$ for the alternative configurations, and hence the equilibrium constant, K, between the forms. Figure 2 shows the results graphically. The line shown has unit slope; although it usually passes through the range of the A values calculated, there are strong indications that the compounds do not exist in the two conformations to an equal extent. If the mole fraction existing in the cis conformation is n, then eq 13 follows, and the

$$
\begin{equation*}
n=\frac{A_{\text {obsd }}-A_{\text {trans }}}{A_{c i s}-A_{\text {trans }}} \tag{13}
\end{equation*}
$$

percentage of cis and trans forms can then be deduced (Table VII). Because of the assumptions made, ${ }^{19}$ values of n must be very approximate. However, it is of interest that m-chlorobenzaldehyde is deduced to exist ca. 80% in the O-trans form XXVII, and 20% in the O -cis form XXVIII. From long-range coupling constants of m-chlorobenzaldehyde in carbon tetrachloride, acetone, and cyclohexane solutions, Kara-
(19) The further assumption is made that the $\sigma_{\mathrm{R}}{ }^{\circ}$ vector in benzaldehyde is displaced toward the carbonyl bond as in A and that the $\sigma_{R}{ }^{\circ}$ yector in anisole is aligned as in B.

A

Figure 2. Plots of $A_{\text {obsd }}$ against the calculated $\sigma_{\mathrm{R}}{ }^{\circ}$ values for the alternative conformations of meta-disubstituted benzenes containing one or two unsymmetrical substituents (the line is that of Figure 1): (a) A, OMe and $\mathrm{F} ; \mathrm{B}, \mathrm{OMe}$ and $\mathrm{I} ; \mathrm{C}, \mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{NMe}_{2} ; \mathrm{D}$, OMe and Br ; E, OMe and $\mathrm{Cl} ; \mathrm{F}, \mathrm{OMe}$ and Me ; (b) G, F and $\mathrm{CO}_{2}-$ $\mathrm{Me} ; \mathrm{H}, \mathrm{F}$ and CHO; I, F and COMe; J, CHO and NO_{2}; K, Cl and $\mathrm{CHO} ; \mathrm{L}, \mathrm{Br}$ and $\mathrm{CHO} ; \mathrm{M}, \mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{Cl} ; \mathrm{N}, \mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{Br} ; \mathrm{O}, \mathrm{OMe}$ and $\mathrm{NO}_{2} ; \mathrm{P}, \mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{I} ; \mathrm{Q}, \mathrm{COMe}$ and NO_{2}; R, Me and $\mathrm{COMe} ; \mathrm{S}, \mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{NO}_{2} ; \mathrm{T}, \mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{Me} ; \mathrm{U}$, CF_{3} and $\mathrm{CO}_{2} \mathrm{Me}$.
batsos and Vane ${ }^{17}$ deduced that m-chlorobenzaldehyde existed $60-70 \%$ in the O-trans form, whereas Miller, et al., ${ }^{18}$ using torsional frequencies in the far-infrared, came to the opposite conclusion; however, these last measurements related to the vapor phase.

XXVII

XXVIII

All the meta-substituted benzaldehydes, acetophenones, and methyl benzoates appear (Table VII) to prefer the O-trans configuration (XXIX, R $=\mathrm{H}, \mathrm{Me}$, OMe) by ΔG values of up to at least 1 kcal . The origin of these energy differences may be due largely to dipoledipole interactions. Rough calculations ${ }^{20}$ for meta-chloro- and meta-fluorobenzaldehyde indicate that the O-trans conformers should be stabilized by ΔG values of the order of $400 \mathrm{cal} / \mathrm{mol}$. The meta-substituted anisoles either show little difference of stability between the two forms, or favor a predominance of the cis isomer.
meta-Disubstituted Compounds with Both Substituents of Less Than $C_{2 v}$ Symmetry. With two asymmetric substituents the treatment is more complicated but (using the symbolism of XXX) it leads to the individual intensities of the four possible conformers (cf. XXXIXXXIV) given by eq 14 and 15 . Calculated values for the four individual conformers are compared with observed A values in Table VIII.

Table VIII. Integrated Intensities (A_{obs}) for meta-Disubstituted Benzenes with Both Substituents of Lower Than C2y Symmetry Compared with A Values Calculated by Eq 14 and 15

Substituents	$A_{\text {obsd }}$	$A_{1}{ }^{\text {a }}$	A_{11}	A_{111}	A_{19}
CHO, CHO	2.710	4790	1,940	3,720	3,720
$\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CO}_{2} \mathrm{Me}$	800	2810	690	1,710	1,710
COMe, OMe	4,480	2270	3,710	1,710	4.590
$\mathrm{CO}_{2} \mathrm{Me} . \mathrm{OMe}$	4,410	2160	4,120	1,880	4,750
OMe, OMe	10,960	9150	12,130	10,750	10,750

${ }^{a}$ Forms denoted by $A_{1}-A_{1 y}$ refer to structures of type XXXIXXXIV, respectively.

$$
\begin{align*}
A_{\text {mella(as } / \mathrm{as})}= & 19,000\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} 1\right)^{2}+\left(\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}+\right. \\
& x y-a z \pm \sqrt{3(x z+a y)\}+340} \tag{14}\\
A_{\text {meta } \mathrm{as} / \mathrm{as})}= & 19,000\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} 1\right)^{2}+\left(\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}+\right. \\
& x y+a z \pm \sqrt{3}(x z-a y)\}+340 \tag{15}
\end{align*}
$$

For four of the compounds, the results indicate the conformations shown (XXXV, XXXVI, XXXVII, and XXXVIII). Hence, as in the compounds with one asymmetric group, there appears to be a general tendency for the $\mathrm{CHO}, \mathrm{CO}_{2} \mathrm{Me}$, and COMe groups to adopt a trans configuration, whereas the OMe group prefers the cis configuration. We intend to investigate this phenomenon further.

[^3]
ortho-Disubstituted Compounds. Symmetry Type of Substituent. In considering the ortho-disubstituted derivatives, three classes of substituent must be distinguished: (i) cyclindrically symmetrical (i.e., F, Cl, Br, Me, and CN) for which the conjugation with the ring will be little impaired by another substituent; (ii) substituents of C_{2}, and pseudo $\mathrm{C}_{2 v}$ symmetry $\left(\mathrm{NO}_{2}\right.$, ND_{2}, and NMe.) for which an ortho substituent can cause loss of conjugation by twisting: (iii) asymmetric substituent ($\mathrm{OMe}, \mathrm{CHO}, \mathrm{CO}_{2} \mathrm{Me}$, and COMe) where the situation is complex due to the simultaneous possibilities of two planar rotamers, and of partial conjugation loss by twisting. In addition direct resonance interaction between the substituents is possible in all the above types of ortho-disubstituted benzenes, and some steric distortions are possible even with cylindrically symmetrical substituents as in, e.g., ortho-dibromobenzene.
ortho-Disubstituted Compounds with Two Cylindrically Symmetrical Substituents. Observed values of $A_{\text {ir tho }}$ are plotted against $\left(\left(\sigma_{\mathrm{K}}{ }^{\circ} 1\right)^{2}+\left(\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}-\sigma_{\mathrm{R}}{ }^{\circ} 1\right.$. $\left.\sigma_{\mathrm{R}}{ }^{0 .}\right\}$ in Figure 3. A considerable degree of scatter is evident, probably as a result of steric interaction between the two ortho positions which will cause ring distortion and other effects. The range of available A values is rather small, and we therefore also plotted in Figure 3 observed intensity values for 2 -substituted pyridines, ${ }^{21}$ in which such steric effects will be effectively absent. Constants b and c of eq 16 were obtained by a least-squares plot on all the data of Figure 3, which yields the line shown (correlation coefficient 0.78). Fair agreement is shown between the data for the ortho-disubstituted benzenes and the 2 -substituted pyridines. The small negative value for c is not significant.
\[

$$
\begin{align*}
& A_{\text {ortho }}=15,900\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} 1\right)^{2}+\left(\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}-\right. \\
& \left.\sigma_{\mathrm{RZ}}{ }^{\circ} 1 \sigma_{\mathrm{R}}{ }^{\circ} 2\right\}-80 \tag{16}
\end{align*}
$$
\]

(21) Cf. A. R. Katitzky, C. R. Palmer, F. J. Swinbourne, T. T. Tidwell, and R. D. Topsom, J. Am. Chem. Soc., 91, 636 (1969).

Figure 3. Plot of $A_{\text {obsd }}$ for ortho-disubstituted benzenes with both substituents of cylindrical symmetry against $\left\{\left(\sigma_{R}{ }^{\circ} 1\right)^{2}+\left(\sigma_{R}{ }^{\circ} 2\right)^{2}-\right.$ $\left.\sigma_{\mathrm{R}}{ }^{\circ} 1 \sigma_{\mathrm{R}}{ }^{\circ} 2\right\}$: \times, two donor substituents; \quad, one donor and one acceptor; and Δ, values for 2 -substituted pyridines.

Table IX shows discrepancies in $\sigma_{\mathrm{R}}{ }^{\circ}$ units between $A_{\text {ortho }}$ values from eq 16 and observed values for compounds with both substituents of cylindrical symmetry; as expected for the lower correlation coefficient, the average discrepancies are greater than those for the meta-disubstituted benzenes; however, only two discrepancies (both for cyano compounds) are greater than 0.06 unit. The poorer correlations for the ortho compounds than for the meta and para analogs are not unexpected in view of possible steric and direct resonance interactions. Inductive and field effects may also be important here.

Table IX. Discrepancies ${ }^{a}$ in Units of $\sigma_{\mathrm{R}}{ }^{\circ}$ for ortho-Disubstituted Benzenes with Two Cylindrically Symmetrical Substituents

	Me	Cl	I	Br	F
F					-0.020
Br		+0.005		-0,060	-0.031
I			-0.003		-0.022
Cl		-0.052			-0.028
Me	+0.045	-0.060	+0.048	$+0.003$	-0.042
CN	-0.073	-0.106			+0.017
CF_{3}		+0.046	+0.017	+0.047	

ortho-Disubstituted Compounds with One Cylindrically Symmetrical and One $\mathrm{C}_{2 \mathrm{v}}$ Substituent. Table X indicates the deviations from eq 16 for compounds containing NMe_{2} and NO_{2} substituents. Compounds containing dimethylamino groups show intensities much less than would be expected, which is obviously a consequence of steric hindrance to reso-

Figure 4. Plots of $A_{\text {obsd }}$ against $A_{\text {caled }}$ for ortho-disubstituted benzenes with one asymmetric substituent; A, CHO and F ; $\mathrm{B}, \mathrm{CO}_{2} \mathrm{Me}$ and F ; C, COMe and $\mathrm{F} ; \mathrm{D}$, OMe and $\mathrm{Br} ; \mathrm{E}, \mathrm{CHO}$ and $\mathrm{Cl} ; \mathrm{F}$, OMe and Cl ; G, CHO and $\mathrm{Br} ; \mathrm{H}, \mathrm{CHO}$ and Me ; I, OMe and F ; J , OMe and $\mathrm{Me} ; \mathrm{K}, \mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{Cl} ; \mathrm{L}, \mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{Br} ; \mathrm{M}, \mathrm{CO}_{2}-$ Me and I; $\mathrm{N}, \mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{Me} ; \mathrm{O}, \mathrm{COMe}$ and Me .
nance between this group and the ring. Compounds with NHMe and ND_{2} groups are at present under investigation to test this hypothesis. Compounds with nitro groups may be anomalous (cf. the corresponding para-disubstituted derivatives), but insufficient examples are presently available.

Table X. Discrepancies for ortho-Disubstituted Benzenes with One Cylindrically Symmetrical Substituent and One Substituent of at Least $\mathrm{C}_{2 \mathrm{v}}$ Symmetry

Substituents	$A_{\text {obsd }}$	Discrepancy a
$\mathrm{NMe}_{2}, \mathrm{Me}$	1090	-0.160
$\mathrm{NMe}_{2}, \mathrm{~F}$	1550	-0.147
$\mathrm{NO}_{2}, \mathrm{Me}$	810	-0.002
$\mathrm{NO}_{2}, \mathrm{CN}$	910	+0.096

[^4]Table XI. Integrated Intensities ($A_{\text {obsd }}$) Compared with $A_{\text {cis }}$ and $A_{\text {trans }}$ Values Calculated by Eq 12 for ortho-Disubstituted Benzenes with One Substituent of at Least $\mathrm{C}_{2 \mathrm{v}}$ Symmetry and One of Lower Symmetry

Substituents		$A_{\text {obsd }}$	$A_{\text {trans }}$	$A_{\text {cis }}$	$\%$ trans
CHO	F	3620	4850	3040	32
	Cl	2130	2960	1800	28
	Br	1840	2980	1830	1
	Me	1752	1630	1110	(>100)
COMe	F	2660	4410	2850	(<0)
	Me	700	1370	940	(<0)
$\mathrm{CO}_{2} \mathrm{Me}$	F	2770	3660	2030	45
	Cl	1310	2000	970	33
	Br	1300	2160	1090	20
	I	1160	2070	1000	17
	Me	840	890	430	90
OMe	F	1680	1880	2880	(>100)
	Cl	1940	1790	2440	77
	Br	2200	1680	2440	32
	I	1680	1780	2470	(>100)
	Me	1660	2160	2470	(>100)

ortho-Disubstituted Compounds with One Cylindrically Symmetrical and One Asymmetrical Substituent. A treatment similar to that outlined above for the metadisubstituted compounds leads to eq 17 for this type

$$
\begin{align*}
A_{\text {ortho }(\mathrm{as} / \mathrm{s})}= & 15,900\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} 1\right)^{2}+\right. \\
& \left.\left(\sigma_{\mathrm{R}}{ }^{\circ}\right)^{2}-\sigma_{\mathrm{R}}{ }^{\circ} 1(y \pm \sqrt{3} z)\right\}-80 \tag{17}
\end{align*}
$$

of compound, where the alternative values apply to the two possible planar configurations. Using the previous values of x and y, alternative values of $A_{\text {ortho (as } / \mathrm{s})}$ are calculated, and compared in Table XI with the $A_{\text {obsd }}$ values. The results are shown graphically in Figure 4. It is clear that some of the $A_{\text {obsd }}$ values lie quite outside
the possible $A_{\text {cis }} / A_{\text {trans }}$ ranges; we believe that this indicates the effects of steric hindrance and rotation of substituents out of the ring plane. Compounds of fixed orientations (XXXIX; $\mathrm{Z}=\mathrm{CO}, \mathrm{O}$, and COO ; $n=1,2$, and 3) will be the subject of future investigations. When these are complete it will be easier to assess the significance of the cis/trans proportions shown in Table XI; the pattern appears to be quite different from that appertaining to the meta compounds.

Acknowledgments. Part of this work was carried out during the tenure of a Nuffield Traveling Fellowship (to R. D. T.). We thank the U. S. National Institutes of Health for a Postdoctoral Fellowship (to T. T. T.) and the Science Research Council for a Research Studentship (to M. V. S.).

Infrared Intensities as a Quantitative Measure of Intramolecular Interactions. VI. ${ }^{1}$ Pyridine, Pyridine 1-Oxide, and Monosubstituted Derivatives. The ν_{16} Band near $1600 \mathrm{~cm}^{-1}$

A. R. Katritzky, ${ }^{2 a}$ C. R. Palmer, ${ }^{2 a}$ F. J. Swinbourne, ${ }^{2 a}$ T. T. Tidwell, ${ }^{2 a}$ and R. D. Topsom ${ }^{\text {2b }}$
Contribution from the School of Chemical Sciences, University of East Anglia, Norwich, England, and the School of Physical Sciences, La Trobe University, Melbourne, Australia. Received June 26, 1968

Abstract

Integrated intensities for pyridine, pyridine 1-oxide, and 1 -substituted pyridinium compounds are used to derive $\sigma_{\mathrm{R}}{ }^{\circ}$ values for : $N \cdot$ and : $N^{+}(X)$. "substituents." Intensities for series of 4 -substituted pyridines and pyridine 1 -oxides provide evidence for direct interaction between the substituent and the hetero group for donor pyridines and for both acceptor and donor pyridine oxides. Intensities for 3 -substituted pyridines show fair agreement with those calculated using the treatment discussed for meta-disubstituted benzenes. 2-Substituted pyridines are compared and discussed with reference to ortho-disubstituted benzenes.

We have previously shown that the total integrated intensity area of the infrared ring stretching bands near $1600 \mathrm{~cm}^{-1}$ for monosubstituted ${ }^{3}$ and for para-, ${ }^{4}$ meta-, ${ }^{1}$ and ortho-disubstituted ${ }^{1}$ benzenes are related to the $\sigma_{\mathrm{R}}{ }^{\circ}$ values of the substituent(s) by relations 1-4. These equations refer to substituents of at least $C_{2 v}$ symmetry-for less symmetrical substituents, appropriate correction factors have been derived. ${ }^{1.4}$ For para-disubstituted benzenes a further correction must be applied where direct interaction occurs. ${ }^{4}$ For durenes an equation similar to (1) applies in the absence of steric hindrance. ${ }^{3}$

$$
\begin{gather*}
A_{\text {mono }}=17,600\left(\sigma_{\mathrm{R}}{ }^{\circ}\right)^{2}+100 \tag{1}\\
A_{\text {para }}=11,800\left(\sigma_{\mathrm{R}}{ }^{\circ} 1-\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}+170 \tag{2}
\end{gather*}
$$

[^5]\[

$$
\begin{align*}
& A_{\text {meta }}=19,000\left\{\left(\sigma_{\mathrm{R}} \mathrm{l}\right)^{2}+\left(\sigma_{\mathrm{R}}{ }^{\circ} 2\right)^{2}+\right. \\
& A_{\text {urtho }}=15,900\left\{\left(\sigma_{\mathrm{R}}{ }^{\circ} 1\right)^{2}+\right. \tag{3}\\
& \\
& \quad\left(\sigma_{\mathrm{R}}{ }^{\circ} 2 \sigma_{\mathrm{R}}{ }^{\circ} 2\right\}+340 \tag{4}\\
& \left.{ }^{\circ}-\sigma_{\mathrm{R}}{ }^{\circ} 1 \sigma_{\mathrm{R}}{ }^{\circ} 2\right\}-80
\end{align*}
$$
\]

We have now studied pyridine, pyridine 1 -cxide, and several series of their monosubstituted derivatives to examine the generality of these equations and as part of a general investigation of substituent-ring interactions in heteroaromatic compounds. Earlier semiquantitative work on the infrared intensities of $2-{ }^{5} 3-{ }^{5}$ and 4 -monosubstituted ${ }^{7}$ pyridines and $2-, 8 \quad 3-, 9^{9}$ and 4 -monosubstituted ${ }^{10}$ pyridine 1 -oxides had indicated that correlations did indeed exist with the nature of the substituent, and especially for compounds of $\mathrm{C}_{2 v}$ sym-
(5) A. R. Katritzky and A. R. Hands, J. Chem. Soc., 2202 (1958).
(6) A. R. Katritzky, A. R. Hands, and R. A. Jones, ibid., 3165 (1958).
(7) A. R. Katritzky and J. N. Gardner, ibid., 2198 (1958).
(8) A. R. Katritzky and A. R. Hands, ibid., 2195 (1958).
(9) A. R. Katritzky, J. A. T. Beard, and N. A. Coats, ibid., 3680 (1959).
(10) A. R. Katritzky and J. N. Gardner, ibid., 2192 (1958).

[^0]: (1) Part IV: P. J. Q. English, A. R. Katritzky, T. T. Tidwell, and R, D. Topsom, J. Am. Chem. Soc., 90, 1767 (1968).
 (2) School of Chemical Sciences, University of East Anglia, Norwich, England.
 (3) Department of Chemistry, University of South Carolina, Columbia, S. C.
 (4) School of Physical Sciences, La Trobe University, Melbourne, Australia.
 (5) R. T. C. Brownlee, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, J. Am. Chem. Soc., 90, 1757 (1968).

[^1]: (6) A. R. Katritzky and P. Ambler in "Physical Methods in Heterocyclic Chemistry," Vol. II, A. R. Katritzky, Ed., Academic Press, New York, N. Y., p 161.
 (7) A. R. Katritzky and P. Simmons, J. Chem. Soc., 2051 (1959).
 (8) A. R. Katritzky and P. Simmons, ibid., 2058 (1959).
 (9) A. R. Katritzky and R. A. Jones, ibid., 3670 (1959).

[^2]: (10) M. Brigodiot and J.-M. Lebas, J. Chim. Phys., 62, 347 (1965).
 (11) Y. S. Bobovitch and N. M. Belyaevskaya, Opt. Spectry., 19, 111 (1965).
 (12) E. D. Schmid, Ber. Bunsenges. Phys. Chem., 67, 39 (1963); Spectrochim. Acta, 22, 1659 (1966).
 (13) J. R. Scherer, "Planar Vibrations in Monosubstituted Benzenes," Dow Chemical Co., Midland, Mich., 1963.
 (14) G. Varsányi, S. Holly, and T. Faragó, Spectrochim. Acta, 19, 683 (1963).
 (15) G. Varsányi, S. Holly, and T. Faragó, ibid., 19, 675 (1963).

[^3]: (20) J. M. Lehn and G. Ourisson, Bull. Soc. Chim. France, 1113 (1963).

[^4]: ${ }^{a}$ Discrepancy $=\left[\left(A_{\text {obsd }}+80\right)^{1 / 2} /(15,900)^{1 / 2}\right]-\left\{\left(\sigma_{\mathrm{R}}{ }^{0} 1\right)^{2}+\left(\sigma_{\mathrm{R}}{ }^{c} 2\right)^{2}\right.$ $\left.-\sigma_{R}{ }^{0} 1 \sigma_{R}{ }^{0} 2\right\}^{1 / 2}$.

[^5]: (1) Part V: A. R. Katritzky, M. V. Sinnott, T. T. Tidwell, and R. D. Topsom, J. Am. Chem. Soc., 91, 628 (1969).
 (2) (a) School of Chemical Sciences, University of East Anglia, Norwich, England; (b) School of Physical Sciences, La Trobe University, Melbourne, Australia.
 (3) R. T. C. Brownlee, A. R. Katritzky, and R. D. Topsom, J. Am. Chem. Soc., 88, 1413 (1966); R. T. C. Brownlee, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, ibid., 90, 1757 (1968),
 (4) P. J. Q. English, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, ibid., 90, 1767 (1968).

